欢迎来到知嘟嘟! 联系电话:13095918853 卖家免费入驻,海量在线求购! 卖家免费入驻,海量在线求购!
知嘟嘟
我要发布
联系电话:13095918853
知嘟嘟经纪人
收藏
专利号: 2016112705680
申请人: 质数链网科技成都有限公司
专利类型:发明专利
专利状态:已下证
专利领域: 电通信技术
更新日期:2025-07-14
缴费截止日期: 暂无
价格&联系人
年费信息
委托购买

摘要:

权利要求书:

1.一种计算决策路径的方法,其特征在于,应用于分布式节点,该方法包括:

将自身生成的新区块存储到自身决策树中;

按照设定的第一周期,周期性地在区块链网络上广播当前时刻自身决策树信息;且接收其它分布式节点在区块链网络上广播的决策树信息;

在每次接收到所述其它分布式节点广播的决策树信息后,根据自身决策树信息,和所述其它分布式节点广播的决策树信息,计算得到最佳决策路径,并将所述最佳决策路径保存;

判断是否到达设定的第二周期;

如果到达设定的第二周期,则从自身计算得到的最新的最佳决策路径,以及其它分布式节点计算得到的最新的最佳决策路径中,选择一条最佳决策路径作为全局最优决策路径;其中,所述第二周期不小于所述第一周期;

根据所述全局最优决策路径,修正所述计算得到最新的最佳决策路径的计算方法,使所述计算方法能够根据自身决策树信息,和所述其它分布式节点广播的决策树信息,计算得到所述全局最优决策路径。

2.根据权利要求1所述的方法,其特征在于,所述周期性地在区块链网络上广播当前时刻自身决策树信息,包括:周期性地在区块链网络上,广播包含当前时刻自身决策树信息的,且具有设定有效期的广播信息。

3.根据权利要求1所述的方法,其特征在于,所述根据自身决策树信息,和所述其它分布式节点广播的决策树信息,计算得到最佳决策路径,包括:将所述自身决策树信息,和所述其它分布式节点广播的决策树信息,输入卷积神经网络,计算得到最佳决策路径。

4.根据权利要求3所述的方法,其特征在于,所述将所述自身决策树信息,和所述其它分布式节点广播的决策树信息,输入卷积神经网络,计算得到最佳决策路径,包括:将所述自身决策树信息,和所述其它分布式节点广播的决策树信息,输入基于迭代二叉树算法的卷积神经网络,计算得到最佳决策路径。

5.根据权利要求3所述的方法,其特征在于,所述根据所述全局最优决策路径,修正所述计算得到最新的最佳决策路径的计算方法,使所述计算方法能够根据自身决策树信息,和所述其它分布式节点广播的决策树信息,计算得到所述全局最优决策路径,包括:根据所述全局最优决策路径,对所述卷积神经网络进行训练,以优化所述卷积神经网络,使所述卷积神经网络能够根据自身决策树信息,和所述其它分布式节点广播的决策树信息,计算得到所述全局最优决策路径。

6.根据权利要求1所述的方法,其特征在于,所述判断是否到达设定的第二周期,且判断确认未到达设定的第二周期时,该方法还包括:判断自身生成的新区块数量是否到达设定的数量;如果到达设定的数量,则从自身计算得到的最新的最佳决策路径,以及其它分布式节点计算得到的最新的最佳决策路径中,选择一条最佳决策路径作为全局最优决策路径。

7.一种分布式节点,其特征在于,包括:

动态分支管理单元,用于将自身生成的新区块存储到自身决策树中;按照设定的第一周期,周期性地在区块链网络上广播当前时刻自身决策树信息;且接收其它分布式节点在区块链网络上广播的决策树信息;

动态分支决策单元,用于在所述动态分支管理单元每次接收到所述其它分布式节点广播的决策树信息后,根据自身决策树信息,和所述其它分布式节点广播的决策树信息,计算得到最佳决策路径,并将所述最佳决策路径保存;

判断单元,用于判断是否到达设定的第二周期;

全局分支融合单元,用于当所述判断单元判断到达设定的第二周期时,从自身计算得到的最新的最佳决策路径,以及其它分布式节点计算得到的最新的最佳决策路径中,选择一条最佳决策路径作为全局最优决策路径;其中,所述第二周期不小于所述第一周期;

其中,所述动态分支决策单元还用于,当所述全局分支融合单元选择全局最优决策路径之后,根据所述全局最优决策路径,修正所述计算得到最新的最佳决策路径的计算方法,使所述计算方法能够根据自身决策树信息,和所述其它分布式节点广播的决策树信息,计算得到所述全局最优决策路径。

8.根据权利要求7所述的分布式节点,其特征在于,所述动态分支管理单元周期性地在区块链网络上广播当前时刻自身决策树信息时,具体用于:周期性地在区块链网络上,广播包含当前时刻自身决策树信息的,且具有设定有效期的广播信息。

9.根据权利要求7所述的分布式节点,其特征在于,所述动态分支决策单元根据自身决策树信息,和所述其它分布式节点广播的决策树信息,计算得到最佳决策路径时,具体用于:将所述自身决策树信息,和所述其它分布式节点广播的决策树信息,输入卷积神经网络,计算得到最佳决策路径。

10.根据权利要求9所述的分布式节点,其特征在于,所述动态分支决策单元将所述自身决策树信息,和所述其它分布式节点广播的决策树信息,输入卷积神经网络,计算得到最佳决策路径时,具体用于:将所述自身决策树信息,和所述其它分布式节点广播的决策树信息,输入基于迭代二叉树算法的卷积神经网络,计算得到最佳决策路径。

11.根据权利要求9所述的分布式节点,其特征在于,所述动态分支决策单元根据所述全局最优决策路径,修正所述计算得到最新的最佳决策路径的计算方法,使所述计算方法能够根据自身决策树信息,和所述其它分布式节点广播的决策树信息,计算得到所述全局最优决策路径时,具体用于:根据所述全局最优决策路径,对所述卷积神经网络进行训练,以优化所述卷积神经网络,使所述卷积神经网络能够根据自身决策树信息,和所述其它分布式节点广播的决策树信息,计算得到所述全局最优决策路径。

12.根据权利要求1所述的分布式节点,其特征在于,该分布式节点还包括:

第二判断单元,用于当所述判断单元判断是否到达设定的第二周期,且判断确认未到达设定的第二周期时,判断自身生成的新区块数量是否到达设定的数量;如果到达设定的数量,则调用所述全局分支融合单元从自身计算得到的最新的最佳决策路径,以及其它分布式节点计算得到的最新的最佳决策路径中,选择一条最佳决策路径作为全局最优决策路径。