1.一种基于定位算法残差的二次规划定位方法,其特征在于:所述定位方法包括以下步骤:
1)由N个基地台接收到移动台MS发送的信号,假设已经估计信号中的到达时间信息TOA,并且将这些信息汇集到定位主基站中,主基站知道所有基地台坐标;
2)根据定位几何原理,以测距为自变量构建线性定位方程组,所述测距等效于TOA;
3)根据定位几何原理,以测距的倒数为自变量构建线性定位方程组;
4)以上述两个定位方程组的最小二乘解表达式构建定位算法残差;
5)将定位问题构建成一个以定位算法残差作为目标函数的最优化问题,并用二次规划数学工具求解最优化问题并得到MS坐标。
2.如权利要求1所述的一种基于定位算法残差的二次规划定位方法,其特征在于:所述步骤2)中,如果移动台MS的坐标为(x,y),第i个基地台BS的坐标为(xi,yi),那么它们之间的距离表示为:假设第i个基地台BS的测量距离是ri,那么真实距离和测量距离之间的关系表示为riTRUE=αiri (2)在NLOS传输环境中,αi总是被约束在0和1之间;
结合(1)(2)得
令 定义一个向量v:
进一步地,从(3)中推出
2
viri-Ki=R-2xix-2yiy i=1,2,...,N (5)其中 R=x2+y2,将上式转变成矩阵形式就得到Y=AX (6)
其中 对(6)做进一步的变换Y=Tv-Y'=AX (7)T T
其中 Y'=[K1,K2,...,KN] ,(.) 为矩阵转置操作,根据最小二乘原理,得到向量X的解为
取向量 的前两个元素作为MS的坐标,即其中
3.如权利要求2所述的一种基于定位算法残差的二次规划定位方法,其特征在于:所述步骤3)中,令 以及 根据(1)得根据(2)得 把它代入(10)并化简得到将上式转变成矩阵形式就得到,即B-v=CX (12)
其中
根据最小二乘原理,得到向量X的解为同理 即为以测距倒数为自变量的最小二乘位置估计。
4.如权利要求3所述的一种基于定位算法残差的二次规划定位方法,其特征在于:所述步骤4)中,定义定位算法残差为:Λ=||P((ATA)-1AT(Tv-Y')-(CTC)-1CT(B-v))|| (14)式中||·||指2-范数;
所述步骤5)中,提出如下的最优化问题:其中vmax={1,1,...1},向量v的下限vmin:
其中 这里Li,j是指第i个BS和第j个BS之间的距离,max{.}为取最大值操作;
公式(15)对应的最优化问题通过二次规划数学工具求解,结果即为最优v向量,该最优v向量代入公式(8)和(9)即得MS的最终位置估计。