欢迎来到知嘟嘟! 联系电话:13095918853 卖家免费入驻,海量在线求购! 卖家免费入驻,海量在线求购!
知嘟嘟
我要发布
联系电话:13095918853
知嘟嘟经纪人
收藏
专利号: 2015104972806
申请人: 浙江工业大学
专利类型:发明专利
专利状态:已下证
专利领域: 发电、变电或配电
更新日期:2024-02-23
缴费截止日期: 暂无
价格&联系人
年费信息
委托购买

摘要:

权利要求书:

1.基于混合算法的含电动汽车换电站配电网孤岛划分方法,包括如下步骤:1) 输入配电网的各项参数:输入配电网络的原始结构,各条支路的线路参数,各个节点的负荷有功和无功功率,各个节点负荷的可控有功功率和不可控有功功率,各个微源的容量参数及成本参数,电动汽车的容量参数,孤岛运行时间T ;2) 设置混合优化算法参数;设置整个混合优化算法的迭代次数Itermax和总的粒子个数N,同时分别设置离散变量和连续变量的参数;2.1) 设置离散变量参数:设置混合算法中用于量子进化算法的维度M1、初始旋转角集合Θk和量子比特位集合Qk;设定粒子的旋转角集合和量子比特位集合,如公式(1)-(6) 所示;Θk=(Θ 1k Θ2k … Θik … ΘNk) (1)其中,Pk为第k次迭代时所有粒子的染色体值集合,为第i个粒子在第k次迭代时染色体值集合;表示第i 个粒子在第k 次迭代时第j 维度的染色体值,M2=N nod×6×T ;

中包含用于表示风机、光伏、电动汽车换电站和可控负荷比例这四个变量的染色体,分别为

3.1) 约束项检查检测每个粒子的位置值是否满足以下约束,若不满足则按相应的步骤进行修正,若满足则进入下一个步骤,直至每个粒子检查完毕;3.3.1) 风机的有功和无功功率限值约束:检查各个粒子中相对于风机的有功功率和无功功率项是否满足公式(23)-(24),若满足,则进入下一步骤;若不满足,则随机在其约束值范围内选择一个数值;其中,和分别为节点j 上的风机在t 时根据预测数据所能够发出的最大有功功率和无功功率;3.3.2) 光伏的有功和无功功率限值约束:检查各个粒子中相对于光伏的有功功率和无功功率项是否满足公式(25)-(26),若满足,则进入下一步骤;若不满足,则随机在其约束值范围内选择一个数值;其中,和分别为节点j 上的光伏在t 时根据预测数据所能够发出的最大有功功率和无功功率;3.3.3) 电动汽车换电站的有功和无功功率限值约束:检查各个粒子中相对于电动汽车充放电的有功功率项是否满足公式(27),若满足,则进入下一步骤;若不满足,则随机在其约束值范围内选择一个数值,直至满足约束为止;其中,和分别为节点j 上的电动汽车换电站在t 时能够实现的最大充电有功功率和最大放电有功功率;为第j 个节点上的电动汽车换电站在t 时刻的Soc

值,EEvs,j为节点j 上的电动汽车换电站的电池总容量,和为第j 个节点

上的电动汽车换电站的Soc 值上限和下限,ΔT 为孤岛时间的单位计算时间;3.3.4) 可控负荷比例系数限值约束:检查各个粒子中相对于可控负荷比例系数项是否满足公式(30),若满足,则进入下一步骤;若不满足,则随机在其约束值范围内选择一个数值;3.3.5) 配电网中的功率平衡约束i) 按公式(31)-(32) 配置各个节点上可用有功功率和无功功率;其中,和分别表示粒子i 在第k 次迭代时其位置值所代表的配电网中节点j 在t 时可输出的有功功率和无功功率;ii) 按公式(33)-(34) 设置配电网中各个节点的负荷有功功率和无功功率:其中,和分别表示粒子i 在第k 次迭代时其位置值所代表的配电网中节点j 在t 时负荷的有功功率和无功功率;PLc,j和Q Lc,j分别为节点j 上负荷可控有功功率和无功功率;PLuc,j和Q Luc,j分别为节点j 上负荷不可控有功功率和无功功率;公式(33) 和(34) 表示每个节点上负荷的功率值为其可控容量和不可控容量的总和;iii) 潮流计算;采用牛拉法对配电网各个时间状态下进行潮流计算,得出各个时刻下配电网内各个孤岛的网损总和和各条线路的网损值

iv) 检查粒子i 在第k 次迭代时是否满足公式(35)-(36),若满足则进入下一步骤,若不满足,则根据贪婪准则对粒子中量子算法部分的离散变量进行随机置0,直至其满足该约束或达到贪婪准则的迭代上限;其中,为粒子i 在第k 次迭代时染色体的位置值所对应的配电网中节点j 的得电状态,0 表示失电,1 表示得电,计算公式为(37) ;Jj为与节点j 相连的线路集合;3.4) 计算适应值按以下步骤,分别计算各个粒子的适应度值,直至所有粒子均计算完毕;本发明方法中粒子的适应度包含三个方面,即负荷断电损失、网损损失和电动汽车的充放电损失;计算步骤如下:i) 负荷断电损失其中,表示粒子i 在第k 次迭代时的负荷断电损失,κj表示节点j 上的负荷的断电损失常数;负荷的断电损失表示粒子i 所表示的配电网在孤岛时间内的各个节点的负荷断电损失总和;ii) 网损损失其中,表示粒子i 在第k 次迭代时的网损损失,cline表示每条线路上的每单位功率网损损失常数;负荷的网损损失表示粒子i 所表示的配电网在孤岛时间内的各条线路网损的总和;iii) 电动汽车换电站充放电损失其中,ηEvsd为电动汽车换电站的充放电损失系数;vi) 按公式(41) 计算粒子i 的适应度值:其中,为粒子i 的适应度值;4) 更新粒子的局部最优向量xpi和全局最优向量xg ;

其中,i =1,2,…,N,k =1,2,…,Itermax;根据公式(42) 更新各个粒子的局部最优向量;同时,选择当次迭代过程中粒子的适应度最小的粒子作为更新全局最优向量的参考值,根据公式(44) 更新粒子的全局最优解;5) 更新粒子的位置值;根据JADE 进化算法,更新各个粒子的位置值,直至所有粒子更新完毕;5.1) 计算中间粒子:按公式(45)-(48) 计算用于位置值更新的中间粒子;Fi=randn i(μF,0.1) (47)CRi=randn i(μCR,0.1) (48)其中,为随机在xp 中选出的位置值,为随机在当前的粒子位置值集合Xk中选出的粒子r1位置值;为在集合Xk和集合A 的并集中随机选出的粒子r 2位置值;F i为第

i个粒子所对应的交互因子,其计算公式如(47)所示;CRi为第i个粒子所对应的变异因子,其计算公式如(48) 所示;μF、μCR为交互因子F 和变异因子CR 的均值。

5.2) 更新位置值:按公式(49) 更新粒子i 的位置值;同时,按照公式(50)-(52) 更新集合A、SCR和S F;

5.3) 更新变异因子和交互因子的均值;按照公式(53) 和公式(54) 更新变异因子和交互因子的均值;μCR=(1-c)·μ CR+c·meanA(SCR) (53)μF=(1-c)·μ F+c·meanL(SF) (54)其中,meanA(.) 为求算数均值的函数;meanL(.) 为求Lehmer 均值的函数;c 为定义的权重比例系数。6) 收敛性检验;检验算法是达到迭代的上限值,即迭代次数是否大于itermax;若是,则进入步骤7) ;若不是,则回到步骤3) ;7) 输出最优粒子位置值xg ;根据最优粒子的位置值xg 得出相应的孤岛划分策略,即相应的配电网的状态,包括各个节点上电动汽车换电站的充放电功率、各条线路的得电状态以及各条线路的状态值。