欢迎来到知嘟嘟! 联系电话:13095918853 卖家免费入驻,海量在线求购! 卖家免费入驻,海量在线求购!
知嘟嘟
我要发布
联系电话:13095918853
知嘟嘟经纪人
收藏
专利号: 2013105113336
申请人: 杭州电子科技大学
专利类型:发明专利
专利状态:无效专利
专利领域: 计算;推算;计数
更新日期:2023-07-20
缴费截止日期: 暂无
价格&联系人
年费信息
委托购买

摘要:

权利要求书:

1.基于加权KS背景模型优化算法的视频运动目标检测方法,其特征在于该方法的具体步骤是: 步骤一:利用混合高斯背景模型算法,更新混合高斯背景模型参数; 步骤二:读入相邻的m幅视频图像,利用加权KS背景模型优化处理,计算高斯加权系数,实现背景模型优化; 假设第t帧图像中第j个像素点的灰度值xj,t,则优化目标函数定义为: 其中加权函数

数据经验分布函数

模型经验分布函数

其中,k为混合高斯的模型个数,xj,t表示第t帧图像中第j个像素点的灰度值;

T

F(xj,t,θ)为k维高斯分布概率;θ=[w1 w2 … wk] 为k维高斯系数列向量; 满足不等式条件时取1,不满足时取0; 为第i个均值为μi,方差为 的高斯模型的概率; 已知像素点的灰度值xj,t,模型经验分布函数在xj,t处分布概率B,各个高斯分量模型T参数,求解最优的高斯权系数向量θ=[w1 w2 … wk],要求 此时,需要讨论模型个数k的取值;

1.当k=2时,将目标函数与约束条件结合,可得最优的高斯系数的取值为: 其中,f1′=f1-f2, 的高斯概率密度值, 的高斯概率密度值。

2.当k≥3时,采用迭代求解极值方法;具体推导如下: 对原目标函数求导整理后得:

其中, 即求解: 参考在非负矩阵分解算法中迭代极值求解算法:这里假定一个大小为i×j的非负矩阵,则公式表述为 其中n为矩阵的行数,m为矩阵的列数,“+”表征矩阵内元素的非负性;已知 求解使得E=V-WH,这里要求||E||尽可能小,并且算法是快速收敛的;即找到求解下式的收敛算法: 其中,V:n×m非负矩阵里的点,W:n×r非负矩阵里的点,H:r×m非负矩阵里的点,E:n×m矩阵里的点;

类似于的求解问题 但此时H是已知的; 选用如果以K-L散度为度量,则改写为 要使||E||最小,即求解如下最大似然解 因为H是已知的,即为求解:

T

其中, F=[f1 f2 … fk]为k维高斯模型的概率密度列向量,当像素灰度值给定,两者均可看作常数矩阵;分析上述所得的偏差函数,该函数服从高斯分布,于是有: 其中,对上式取对数操作得:

参考非负矩阵分解算法,负梯度方向迭代逼近的原则: 则,从负梯度方向对wi实行迭代,可得: 其中,n为迭代的次数,k为高斯模型的个数;即得近似的高斯系数; 综上,完成了基于加权KS背景模型优化算法的背景建模; 步骤三:对运动目标的检测;将像素点逐个代入所建模型,求解拟合偏差,并将其与门限值比较,若大于门限值则判定为前景,用“0”表示,反之即判为背景,用“1”表示,实现对目标的检测; 步骤四:判定检测到的图像是否为最后一帧,如果是则结束检测,反之跳回步骤二进行下一帧图像的检测操作处理,直至所有的图像均被检测完为止。